Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 30(25): 45792-45806, 2022 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-36522976

RESUMO

The quantitative measurement of plasma soft x-ray spectra is an important diagnostic problem in indirect-drive laser inertial confinement fusion (ICF). We designed, built, and tested a compact multichannel soft x-ray spectrometer with both spatial and temporal resolution capabilities for the detection of the spatiotemporal distribution of soft x-ray spectra. The spectrometer occupies a small solid angle, and the close measurement angle used for each channel enables the measurement of the angular distribution of emitting soft x-rays in ICF experiments. The spectrometer comprises pinhole, filter, and multilayer flat mirror arrays, and an x-ray streak camera. Its energy range is 0.1 - 3 keV. The dispersive elements of the spectrometer were calibrated at the Beijing Synchrotron Radiation Facility. The accuracy of the calibration was ≤ 5%, and the combined energy resolution (E/ΔE) of the calibrated dispersive elements of each channel was higher than 10. Finally, the instrument was tested at the Shenguang-III Laser Facility. The measurement results of x-ray radiation flux are agreed well with the experimental results of the M-band flat-response x-ray diode, demonstrating the feasibility of the proposed spectrometer configuration.

2.
Opt Express ; 30(6): 8777-8793, 2022 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-35299323

RESUMO

The measurement of hotspot electron temperature is a paramount technique of implosion physics research in inertial confinement fusion. This study proposes a novel quasi-coaxis dual-energy flat spectral response high-resolution X-ray imaging instrument comprising a dual-channel total-reflection Kirkpatrick-Baez microscope and two flat non-periodic multilayer mirrors, which can image at 6.4 ± 0.5 and 9.67 ± 0.5 keV simultaneously. Various theoretical simulations were performed to verify the performance and feasibility of the imaging instrument, which was assembled and characterized in a laboratory. Experimental results show that the imaging instrument could achieve a high spatial resolution of 5 µm in a ± 150 µm field of view (FOV), the root mean square(RMS) deviation values of the measured reflection efficiency are 1.71% and 1.82% for the 6.4 keV and 9.67 keV imaging channels, respectively, in the ± 150 µm FOV.

3.
Phys Rev Lett ; 128(7): 075001, 2022 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-35244411

RESUMO

A new method for measuring the time-dependent drive flux at the hohlraum center is proposed as a better alternative to conventional wall-based techniques. The drive flux here is obtained by simultaneous measurement of the reemitted flux and shock velocity from a three-layered "cakelike" sample. With these two independent observables, the influence induced by the uncertainty of the material parameters of the sample can be effectively decreased. The influence from the closure of the laser entrance hole, which was the main challenge in conventional wall-based techniques, was avoided through localized reemitted flux measurement, facilitating drive flux measurement throughout the entire time history. These studies pave a new way for probing the time-dependent drive flux, for both cylindrical hohlraums and novel hohlraums with six laser entrance holes.

4.
Opt Express ; 27(6): 8348-8360, 2019 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-31052654

RESUMO

The development of a polar-view Kirkpatrick-Baez microscope, fielded in the upper polar zone of the Shenguang-III laser fusion facility, is presented. With this microscope, the resolving power of polar-direction X-ray imaging diagnostics is improved, to the 3 ~5 µm scale. The microscope is designed for implosion asymmetry studies, with response energy points at 1.2 keV, 3.5 keV, and 8 keV. A biperiodic multilayer scheme is adopted to accommodate multiple implosion stages. We present the overall optical system design, target aiming scheme, characteristic composite imaging diagnostic experiments and initial results. The inertial-driven quasi-one-dimensional spherical implosions were observed from orthogonal directions with a convergence ratio of ~14.4. Fine features of the stagnating hot spot core are also resolved.

5.
Sci Rep ; 9(1): 5050, 2019 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-30911070

RESUMO

This study explores the radiation field temperatures introduced by the laser spot, the re-emitting wall in a hohlraum and the entire hohlraum drive source. This investigation, which is the first of its kind, is based on the radiation fluxes from the laser spot and the re-emitting wall, which have been accurately measured using time- and space-resolving flux detectors in a recent work, and additional flux data. The temperature difference between the laser spot and the entire hohlraum drive source was 6.08-35.35% of the temperature of the latter throughout the entire laser pulse, whilst that for the re-emitting wall was 3.90-12.81%. The radiation temperature of the cooler re-emitting wall had more influence on the temperature increase of the entire hohlraum drive source than the hot laser-spot temperature, which has been quantitatively discussed. Experimentally, we established the average distributions of the temperature fields of all the emitting sources, namely laser spot and re-emitting wall, of the irradiating fluxes on the capsule region in the hohlraum radiation field. This important progress in the exploration of radiation temperature distributions within a hohlraum will provide a foundation for determination of the irradiating radiation on the capsule and evaluation of capsule symmetry.

6.
Rev Sci Instrum ; 89(9): 093505, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30278718

RESUMO

An ultraviolet Thomson-scattering system has been designed and implemented on the Shenguang-III laser facility, a 48-beam, 3ω (351 nm), 180 kJ-level laser driver for high energy density physics and inertial confinement fusion researches. The 4ω (263.3 nm) probe beam of the Thomson-scattering system is injected from the north pole (top) of the target chamber, with an assistant beam-pointing monitor to achieve high pointing accuracy. The Thomson-scattered light is collected by a double-Cassegrain optical transmission system, which provides an achromatic image over a wide wavelength range of 200-800 nm. A novel on-line alignment method is developed and applied to the diagnostic system, ensuring a volumetric positioning accuracy of ∼30 µm for the scattering volume. An online calibration is also conducted to provide the wavelength benchmark and the spectral resolution of the system. This Thomson-scattering system has been tested in a complicated experimental environment with gas-filled hohlraums, and a high-quality ion feature of the scattered light has been obtained.

7.
Rev Sci Instrum ; 89(8): 083108, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30184675

RESUMO

An eight-channel x-ray flat crystal spectrometer was developed for high energy density physics research at the Shenguang-III (SG-III) laser facility. The spectrometer uses trihydroxymethylaminomethane crystals (2d = 8.78 Å) to record Ti K-shell emission in the photon energy range of 4.65-5.05 keV. The spectrometer couples to an x-ray framing camera to achieve time-resolution. This has four microstrips, and each strip records two snapshots of the emission image. Based on the intersection positioning system with a dual-charge coupled device, the alignment system is easily operated and efficient. The instrument was tested and used for Au hohlraum plasma diagnosis experiments on SG-III. The He-α line and its Li-like satellites and the Ly-α line of a Ti tracer were detected, from which the spectral resolution of the instrument was analyzed. The spectral resolution E/ΔE at the Ti He-α line ranges from about 500 to 880 and mainly limited by the x-ray source size.

8.
Rev Sci Instrum ; 89(6): 063502, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29960517

RESUMO

Space-resolving flux detection is an important technique for the diagnostic of the radiation field within the hohlraum in inertial confinement fusion, especially for the radiation field diagnostic in the novel spherical hohlraum with octahedral six laser entrance holes (LEHs), where localized measurements are necessary for the discrimination of the radiation flux from different LEHs. A novel space-resolving flux detector (SRFD) is developed at the SG-III laser facility for the radiation flux measurement in the first campaign of the octahedral spherical hohlraum energetics experiment. The principle and configuration of the SRFD system is introduced. The radiation flux from the wall of a gas-filled octahedral spherical hohlraum is measured for the first time by placing the SRFD system at the equatorial position of the SG-III laser facility, aiming at the hohlraum wall through one of the six LEHs. The absolute radiation flux from the re-emission area on the hohlraum wall is measured, and good consistency is found between the experimental data and the calculated data from a three-dimensional view factor analysis.

9.
Phys Rev Lett ; 120(16): 165001, 2018 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-29756949

RESUMO

The first octahedral spherical hohlraum energetics experiment is accomplished at the SGIII laser facility. For the first time, the 32 laser beams are injected into the octahedral spherical hohlraum through six laser entrance holes. Two techniques are used to diagnose the radiation field of the octahedral spherical hohlraum in order to obtain comprehensive experimental data. The radiation flux streaming out of laser entrance holes is measured by six flat-response x-ray detectors (FXRDs) and four M-band x-ray detectors, which are placed at different locations of the SGIII target chamber. The radiation temperature is derived from the measured flux of FXRD by using the blackbody assumption. The peak radiation temperature inside hohlraum is determined by the shock wave technique. The experimental results show that the octahedral spherical hohlraum radiation temperature is in the range of 170-182 eV with drive laser energies of 71 kJ to 84 kJ. The radiation temperature inside the hohlraum determined by the shock wave technique is about 175 eV at 71 kJ. For the flat-top laser pulse of 3 ns, the conversion efficiency of gas-filled octahedral spherical hohlraum from laser into soft x rays is about 80% according to the two-dimensional numerical simulation.

10.
Chem Commun (Camb) ; 54(23): 2906-2909, 2018 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-29497731

RESUMO

Metal coordination crosslinking between stiff N-polyindole chains was constructed, and the crosslinked films exhibited high tensile strength, high heat resistance and excellent polar solvent resistance. The noncovalent crosslinking can be further removed via external pyrophosphate, which endows the crosslinked polymer with a recyclable behavior. The tensile strength and glass transition temperature of the polymers can be nondestructively detected by taking advantage of the fluorescence quenching effect of metal coordination to the adjacent bipyridine structure.

11.
Rev Sci Instrum ; 89(2): 023504, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29495861

RESUMO

The accuracy of the determination of the burn-averaged ion temperature of inertial confinement fusion implosions depends on the unfold process, including deconvolution and convolution methods, and the function, i.e., the detector response, used to fit the signals measured by neutron time-of-flight (nToF) detectors. The function given by Murphy et al. [Rev. Sci. Instrum. 68(1), 610-613 (1997)] has been widely used in Nova, Omega, and NIF. There are two components, i.e., fast and slow, and the contribution of scattered neutrons has not been dedicatedly considered. In this work, a new function, based on Murphy's function has been employed to unfold nToF signals. The contribution of scattered neutrons is easily included by the convolution of a Gaussian response function and an exponential decay. The ion temperature is measured by nToF with the new function. Good agreement with the ion temperature determined by the deconvolution method has been achieved.

12.
Rev Sci Instrum ; 89(1): 013704, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29390659

RESUMO

Direct intensity calibration of X-ray grazing-incidence microscopes is urgently needed in quantitative studies of X-ray emission from laser plasma sources in inertial confinement fusion. The existing calibration methods for single reflecting mirrors, crystals, gratings, filters, and X-ray detectors are not applicable for such X-ray microscopes due to the specific optical structure and the restrictions of object-image relation. This article presents a reliable and efficient method that can be performed using a divergent X-ray source and an energy dispersive Si-PIN (silicon positive-intrinsic-negative) detector in an ordinary X-ray laboratory. The transmission theory of X-ray flux in imaging diagnostics is introduced, and the quantities to be measured are defined. The calibration method is verified by a W/Si multilayer-coated Kirkpatrick-Baez microscope with a field of view of ∼95 µm at 17.48 keV. The mirror reflectance curve in the 1D coordinate is drawn with a peak value of 20.9% and an uncertainty of ∼6.0%.

13.
Rev Sci Instrum ; 89(1): 013501, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29390682

RESUMO

In laser driven hohlraums, laser beams on the same incident cone may have different beam and plasma conditions, causing beam-to-beam backscatter difference and subsequent azimuthal variations in the x-ray drive on the capsule. To elucidate the large variation of backscatter proportion from beam to beam in some gas-filled hohlraum shots on Shenguang-III, two 28.5° beams have been measured with the Stimulated Raman Scattering (SRS) time-resolved spectra. A bifurcated fiber is used to sample two beams and then coupled to a spectrometer and streak camera combination to reduce the cost. The SRS spectra, characterized by a broad wavelength, were further corrected considering the temporal distortion and intensity modulation caused by components along the light path. This measurement will improve the understanding of the beam propagation inside the hohlraum and related laser plasma instabilities.

14.
Rev Sci Instrum ; 88(8): 083115, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28863660

RESUMO

X-ray imaging plates are one of the most important X-ray imaging detectors and are widely used in inertial-confinement fusion experiments. However, their linear response range, which is the foundation of their quantitative data analysis, has not been sufficiently deeply investigated. In this work, we develop an X-ray fluorescer calibration system and carefully explore the linear response range of X-ray imaging plates. For the first time, nearly the entire grayscale range of the X-ray imaging plate linear response-7819-64 879 in the range of 0-65 535-has been observed. Further, we discuss the uncertainties involved in the calibration process. This work demonstrates the excellent linear response qualities of X-ray imaging plates and provides a significant foundation for expanding their quantitative applied range.

15.
Rev Sci Instrum ; 88(6): 063506, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28667965

RESUMO

A coaxial, high performance diamond detector has been developed for neutron diagnostics of inertial confinement fusion at ShenGuangIII laser facility. A Φ10 mm × 1 mm "optical grade" chemical-vapor deposition diamond wafer is assembled in coaxial-designing housing, and the signal is linked to a SubMiniature A connector by the cathode cone. The coaxial diamond detector performs excellently for neutron measurement with the full width at half maximum of response time to be 444 ps for a 50 Ω measurement system. The average sensitivity is 0.677 µV ns/n for 14 MeV (DT fusion) neutrons at an electric field of 1000 V/mm, and the linear dynamic range is beyond three orders of magnitude. The ion temperature results fluctuate widely from the neutron time-of-flight scintillator detector results because of the short flight length. These characteristics of small size, large linear dynamic range, and insensitive to x-ray make the diamond detector suitable to measure the neutron yield, ion temperature, and neutron emission time.

16.
Appl Opt ; 56(12): 3311-3318, 2017 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-28430251

RESUMO

This article presents the development of an x-ray eight-image Kirkpatrick-Baez diagnostic system to be used at China's Shenguang-III (SG-III) laser facility in aspects of the optical design, multilayers, and online/offline tests. Six pieces of concave spherical substrates are used for constituting a special optical structure. Dual-periodic tungsten/carbon (W/C) multilayers are used for high reflectivity and large angular bandwidth of ∼0.1°. The global spatial resolution is ∼5 µm in the ±100 µm range. The schemes of system installation, transport, collimation, and image acquisition at China's SG-III facility are also discussed.

17.
Opt Express ; 25(3): 2608-2617, 2017 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-29519104

RESUMO

High resolution X-ray diagnosis is a significant method for obtaining ablation-front and trajectory measurements targeting Rayleigh-Taylor (RT)-instability growth in initial confinement fusion (ICF) experiments. In this paper, a novel Kirkpatrick-Baez-type structure, as a kind of essential X-ray micro-imaging apparatus, has been developed that realizes a large field of view (FOV) and images with high resolution and energy response. Zoned multilayer coating technology is applied to the Kirkpatrick-Baez mirrors to transmit two specific quasi-monochromatic light through the same mirror and enables a compact dual-channel structure. This microscope has been assembled in the laboratory and later implemented at the Chinese SG-III laser facility. The characterization results show that this imaging system can achieve a good spatial resolution of 5 µm in a large FOV of 500 µm, while maintaining a strong monochromatic performance with bandwidth of 0.5 keV at 2.5 keV and 4.3 keV respectively.

18.
Rev Sci Instrum ; 87(4): 043114, 2016 04.
Artigo em Inglês | MEDLINE | ID: mdl-27131661

RESUMO

We present an ultrafast single-shot measurement method for the optical Kerr effect based on a polarization gating technique. The advantages of this single-shot technique are demonstrated via a 26-ps chirped supercontinuum pulse used to measure the optical Kerr effect for three transparent organic liquids. The single-shot measurement results agree well with those of the time-resolved optical Kerr gate method, as regards both time and intensity. This method facilitates real-time observation of ultrafast optical Kerr responses of samples and simultaneous high-time-resolution data acquisition at ∼260 fs. We demonstrate that the single-shot measurement method is potentially a powerful tool for investigating the optical Kerr effects of unstable samples, and for application to high-power laser systems.

19.
Rev Sci Instrum ; 87(12): 123506, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28040978

RESUMO

In this paper, we introduce a new method to calibrate the absolute sensitivity of a soft X-ray streak camera (SXRSC). The calibrations are done in the static mode by using a small laser-produced X-ray source. A calibrated X-ray CCD is used as a secondary standard detector to monitor the X-ray source intensity. In addition, two sets of holographic flat-field grating spectrometers are chosen as the spectral discrimination systems of the SXRSC and the X-ray CCD. The absolute sensitivity of the SXRSC is obtained by comparing the signal counts of the SXRSC to the output counts of the X-ray CCD. Results show that the calibrated spectrum covers the range from 200 eV to 1040 eV. The change of the absolute sensitivity in the vicinity of the K-edge of the carbon can also be clearly seen. The experimental values agree with the calculated values to within 29% error. Compared with previous calibration methods, the proposed method has several advantages: a wide spectral range, high accuracy, and simple data processing. Our calibration results can be used to make quantitative X-ray flux measurements in laser fusion research.

20.
Rev Sci Instrum ; 86(10): 103112, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26520945

RESUMO

The space-resolving measurement of X-ray flux from a specific area (laser spot, re-emitting wall, or capsule) inside the hohlraum is an ongoing and critical problem in indirectly driven inertial-confinement fusion experiments. In this work, we developed a new two-dimensional space-resolving flux detection technique to measure the X-ray flux from specific areas inside the hohlraum by using the time- and space-resolving flux detector (SRFD). In two typical hohlraum experiments conducted at the Shenguang-III prototype laser facility, the X-ray flux and radiation temperature from an area 0.2 mm in diameter inside the hohlraum were measured through the laser entrance hole (LEH). The different flux intensities and radiation temperatures detected using the SRFD from the inner area of the LEH were compared with the result measured using the flat-response X-ray detector from the entire LEH. This comparison was also analyzed theoretically. The inner area detected using the SRFD was found to be the re-emitting wall area alone. This important improvement in space-resolving X-ray flux measurement will enhance the current X-ray flux space characterization techniques, thereby furthering the quantitative understanding of X-ray flux space behavior in the hohlraum.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...